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HEAT TRANSFER IN A DISPERSIVE MEDIUM BOUNDED BY NONBLACK SURFACES
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The problem of radiative exchange in a medium bounded by gray
walls is reduced to a similar problem with black walls, The influence
of a deviation from Lambert's law on radiation transmitted through a
layer is examined,

§1. Radiation intensity in an absorbing and disper-
sive medium is described by the transfer equation
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This equation is linear in regard to intensity. I the
volume is bounded by nonblack surfaces, the boundary
conditions are written in the form

17T, o) = 1o(T, ) +
+ .2..1._3’;'(\[‘, 0 )P (0, )" (T, 0)do'. (2)
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Integration in (2) is performed over half the solid an-
gle. The problem of integrating Eq. (1) with boundary
conditions (2) in the general case is highly compli-
cated. It simplifies appreciably in the case in which
Lambert's law is valid, i.e., where it is assumed
that both the reflected and self-radiation of the sur-
faces are isotropic. We subdivide the surface I' into
I') regions, in each of which the reflection factor and
the intensity of the incident and self-radiation are
constant. In this case

I~ (T,) = In(Fk)+§ljjrk(m’) I*(T), 0 )do'. (3)

Let us assume that we know the solution of Eq. (1)
in the case of black walls, with the boundary condi~
tions

ITT =1 [ (Tiy=0

and a zero source function, and that we also know the
solution with a given source function and zero bound-
ary conditions

I=(Ty) = 0.

We denote these solutions by Ii{ (r, w) and T (r, w),
respectively. In view of the linearity of the transfer
equation, the general solution for nonblack surfaces
has the form

1(r, @)= % [L(T) + (D)) L(r, ©) + [j(r, o). (4)
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By substituting these expressions into Eq. (3), we
get

L= D1 T) +1,(T)] ap + by, ®)
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where

0 = 1_5”2 ©) I (T, 0)do';
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Thus, knowing the solution for black surfaces, and
having solved the system of linear equations (5), we
get the intensity of the reflected radiation, while from
formula (4) we obtain the total radiation. One fre-
quently encounters the case of two surfaces (a plane
layer, concentric spheres, coaxial cylinders). Here,
one readily gets

I(r,w) =
— (1= ap) (1o (') 4 by) + a3y (1o (Tp) + by) I (r, ©) +
(1= ay) (1= a3p) — 01005,
L= @) (Lo (To)+ b5} + @ (1o (T} 4 b1) I'(r, o)+
| (1= ay) (1— y) — apayy ’
+ Ii(x, o). (6)

Assuming that the reflection factor is independent
of the angle of incidence, for a plane isothermal layer
it is not difficult to obtain from (6) an expression for
the energy of the radiation incident on the first sur-
face:

8T:{(801 R+40T erq + pter) + T — R X
X [0T* e+ e (B + R)]}X
x {(1-—r,R)(1—r,R) —ryry 22 |71 (7)

Obviously €,.,4 + g tR = 1.

By interchanging subscripts 1 322, one obtains the
energy of the radiation incident on the second surface.
§2. I ry is independent of the angle of incidence,
one can use a somewhat different approach. It is sim-

ilar to a method proposed by Vlasov for calculating
the heat transfer between surfaces separated by a
transparent medium [1]. Examine, for example, the
equilibrium heat transfer between two closed surfaces
exhibiting the properties mentioned above. Enclosed
between these surfaces is anabsorbing and dissipative
medium with an arbitrary scattering characteristic.
In the case of equilibrium, the energy released by the
first surface is equal to the energy imparted to the
second surface, i.e.,

EIET‘#SI‘ :8;—82_.
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We express the energy of the effective radiation in
terms of intrinsic energy and the energy of the radia-
tion incident on the surface:

. _ .
e =c¢n+rel, &5 =eg+ref

Let us introduce the function Gy3, which is equal to the
portion of the energy emitted from the first surface
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Energy of the passing radiation plotted vs.
the radiation incident on the layer: 1) y =
=1, Ij=1+3p/R2; 2)y=1, [(=2;3) y=
=0.5, Ig=1+3p/; 4) y=0.5, I;=2; 5)
v=0, Ip=1+34/2;6) y=0, I, =2.

that is absorbed by the second surface, and also the
function Gy;, which is equal to the portion of energy
{emitted from the second surface) that is absorbed by
the first surface, provided that both surfaces are
black. Then obviously

8;- =& Gy + (1—Gy) &5

since part of the energy 1 — Gy is reflected from the
medium back to the second surface.

Having solved the obtained system of equations
with respect to &, we have

612 S,6Tt —G21 S,0 T
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where €01 = S10'T%(1 - I'1), Eyg = SQO' Tg(l - 1‘2) and Sl’
3, are the areas of the first and second surfaces,
respectively. Since, £ =0 for Ty = Ty, it follows that

Glzsl = Gzls‘zv

i.e., a reciprocity relation is obtained. Taking this
into account, we obtain

ﬁ—Té
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e=G,S,0 (8)

Tor a plane layer Gy = Gy = G; /8, =Q (the energy
flux). The function G(7y)(7p is the optical thickness of
the layer) has been numerically calculated in {2] for a
layer free of scattering or having a spherical scatter-
ing characteristic. For a layer with a scattering
characteristic of a simple elongated shape P(f) =1 +
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+x cos 6, we have calculated the function G for a
plane layer in the first approximation by the method
of spherical harmonics [3]

G(t) = (9)
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where v =k /k

We have made use of Marshak's boundary con-
ditions [3]. For two concentric spheres and two in-
finite coaxial circular cylinders separated by an
absorbing and dispersive medium, the functions Gy,
also can be readily calculated in first approximation
by the method of spherical harmonics. Assuming a
spherical scattering characteristic, and making use
of Marshak's boundary conditions, one obtains for
concentric spheres,

(10)
1 3 1 1 ’
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where Ry is the radius of the inner sphere, and R, is
the radius of the outer sphere. Using the same as-
sumptions, for two coaxial cylinders, we obtain
1 1
G = 5 » (11)
TR 1 1 Rz
— ( ; 4= k In =
Rl RQ 1

where R{ and R; are the radii of the inner and outer
cylinders, respectively.

§3. It is of interest to determine, if only qualita~-
tively, the error introduced by assuming validity of
Lambert's law. To this end, we have calculated in
first approximation, by Ivon's method [3], the energy
of the radiation transmitted through an absorbing and
dispersivelayer witha spherical scattering character-
istic. The radiation intensity was approximated by the
expression

I{n, 7)
I(p, 1) =

= Qo (t) + ps () (n > 0),
@ () +F () (a<0),

where u is the cosine of the angle formed between the
axis normal to the planes and the direction of the ra-
diation.

The intensity of the radiation emitted from the sur-
face 7 = 0 was taken in the form I; = 1 + (3/2)u and,
for comparison, intheform I, = 2. The surfaces 7= 0
and 7 = 1y were postulated to be purely absorbing sur-
faces. In the figure, the curves showing the energy
transmitted through the layer as a function of the op-~
tical thickness of the layer 7y are plotted for various
values of v. Tt can be seen from the figure that for
moderately thick layers, a pronounced difference
between the nonspherical and spherical radiation
intensities has only a slight effect on the energy
transmitted through the layer. For large optical
thicknesses, the error in transmitted energy that
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arises in the substitution of spherical for non-
spherical surface radiation does not increase ad
infinitum, but rather tends to a certain constant
value. Thus, for a nonscattering layer, in the
case under consideration, the error approaches
0.2 as Ty~ O

NOTATION

2 is the unit vector of radiation; k is the attenuation
factor of the medium; kg is the scattering coefficient
of the medium; P is the scattering characteristic; w
is the solid angle of beam orientation; j is the source
function, I™(T", w) is the effective surface radiation in-
tensity; I,(I", w) is the surface self-radiation intensity;
1M(I", w) is the intensity of radiation incident on the
surface; r{l", w) is the surface reflection factor; P' is
the reflection characteristic; Ig(T)) is the rfﬂected
radiation intensity near the surface of I'y ;¢ is the
energy incident on the first surface; gy is the proper
energy of radiation from first surface; g is the proper
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energy of radiation from second surface; T is the
temperature of the medium; 0 is the Stefan-Boltzmann
constant; 44 is the dimensionless energy of radia-
tion of thelayer; &;, istheportion of the energy trans-
mitted through the layer; e is the effective radiation
energy of thefirst surface; &5 is the effective radiation
energy of second surface; 7 is the optical thickness;

r is the radius vector of a peint; R is the reflection
factor of the layer.
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