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The problem of radiative exchange in a medium bounded by gray 
walls is reduced to a similar problem with black wails. The influence 
of a deviation from Lambert's law on radiation transmitted through a 
layer is examined~ 

w R a d i a t i o n  i n t e n s i t y  in  an  a b s o r b i n g  and  d i s p e r -  
s i ve  m e d i u m  is  d e s c r i b e d  by the  t r a n s f e r  equa t i on  

-~-* k~ ~p(~, ~')I(~, ~')d~' +]. v I + k I =  4~J (1) 

This equation is linear in regard to intensity. If the 

volume is bounded by nonblack surfaces, the boundary 

conditions are written in the form 

I - ( r ,  ~o) : 1o(r, ,o) + 

t ~ r (r, ~o') P' ((0, ~0') I + (r, o') d ~o'. (2) 
+ 2--~-, ) 

Integration in (2) is performed over half the solid an- 

gle. The problem of integrating Eq. (i) with boundary 

conditions (2) in the general case is highly compli- 
cated. It simplifies appreciably in the case in which 

Lambert's law is valid, i.e., where it is assumed 

that both the reflected and self-radiation of the sur- 

faces are isotropic. We subdivide the surface 1" into 

1"k regions, in each of which the reflection factor and 

the intensity of the incident and self-radiation are 

constant. In this case 

1 ; r  1 + / - ( G )  = i o ( G )  + ~ k(~o') (G ,  ~o')dco'. (3) 

Let  us  a s s u m e  tha t  we know the  s o l u t i o n  of Eq.  (1) 
in  the  c a s e  of b l a c k  wa i l s ,  with the  b o u n d a r y  c o n d i -  

t i ons  

w h e r e  

z= d 

(5') 

Thus, knowing the solution for black surfaces, and 

having solved the system of linear equations (5), we 

get the intensity of the reflected radiation, while from 

formula (4) we obtain the total radiation. One fre- 

quently encounters the case of two surfaces (a plane 

layer, concentric spheres, coaxial cylinders). Here, 

one readily gets 

I (r, co) = 

( t - -  a~)(10(r0 + b0 + a,~(10(G) + b2) i,, (r,, (0) + 
( 1- -  an) ( I - -  a2. j - -  a12a21 

+ ( 1 -  a~O (Io (r~)+ b 2) + aza (I o (F~) + bO I '  (r, (o) + 
( 1 - -  au) ( I - -  a22) - -  al~a~l 

+ I}(r, (o). (6) 

A s s u m i n g  that  the  r e f l e c t i o n  f a c t o r  i s  i n d e p e n d e n t  
of the  ang le  of i n c i d e n c e ,  for  a p l a n e  i s o t h e r m a l  l a y e r  
i t  i s  no t  d i f f icu l t  to ob t a in  f r o m  (6) an  e x p r e s s i o n  for  
the  e n e r g y  of the  r a d i a t i o n  i n c i d e n t  on the  f i r s t  s u r -  

face :  

~ - = {  (%1 ]r -~ (J T4 grad -~ g0~ gtr ) ~- r2 (g tr - -  R) X 

x [o T* *~ad + %, (* t, + R)] } x 

X { ( 1 - - r l R ) ( 1 - - r . R ) - - r r r 2  e2 ~-1 
t r  I " 

(7) 

. i -  (G)  = 1, 1 -  (r,-~ ,) = 0 

and  a z e r o  s o u r c e  func t ion ,  an d  tha t  we a l s o  know the  
so lu t i on  with a g iven  s o u r c e  func t i on  and  z e r o  b o u n d -  
a r y  cond i t i ons  

I -  (G) = O. 

r 
We denote  t h e s e  s o l u t i o n s  by I t (r, w) and  Ij (r,  w), 
r e s p e c t i v e l y .  In v iew of the  l i n e a r i t y  of the t r a n s f e r  
equa t ion ,  the  g e n e r a l  s o l u t i o n  fo r  n o n b l a e k  s u r f a c e s  
has  the  f o r m  

] (r, ~) ~" l;~ (r, li (r, 00. (4) = _ [10(G) + r~ (r~)] ~) + 
k 

By s u b s t i t u t i n g  t h e s e  e x p r e s s i o n s  in to  Eq.  (3), we 
ge t  

I, ( r , )=  ~ [Io (r,) + I~ (r,)] ~ ,  + b k, (5) 
i 

Obvi~ + ~tr +R = i. 
By interchanging subscripts I ~- 2, one obtains the 

energy of the radiation incident on the second surface. 
~2. If r k is independent of the angle of incidence, 

one can use a somewhat different approach. It is sim- 

ilar to a method proposed by Vlasov for calculating 

the heat transfer between surfaces separated by a 

transparent medium [1]. Examine, for example, the 
equilibrium heat transfer between two closed surfaces 

exhibiting the properties mentioned above. Enclosed 
between these surfaces is an absorbing and dissipative 
medium with an arbitrary scattering characteristic. 

In the case of equilibrium, the energy released by the 
first surface is equal to the energy imparted to the 
second surface, i.e., 

G =~7--G?=G~--G;. 
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We express  the energy  of the effective rad ia t ion  in  
t e r m s  of i n t r i n s i c  energy and the energy of the r a d i a -  
t ion inc ident  on the sur face :  

e 1 = e01 -[- r I 81+, 8~- = eoz -[- r 2 ~ .  

Let us in t roduce the function G12, which is equal to the 
por t ion  of the energy  emit ted  f rom the f i r s t  sur face  

0.2 ['- 
I 

3 ~  

O ~.# 0.8 /.2 1:0 

Energy  of the pass ing  rad ia t ion  plotted vs. 
the rad ia t ion  incident  on the l ayer :  1) ~/= 
=1,  I 0 = l  + 3p/2; 2) Y =1,  I0=2;  3) 7 = 
=0.5,  I 0 = l  + 3~/2; 4) 7 = 0 . 5  , I0=2;  5) 

y = 0 ,  I 0 = l  +3p/2;6) 7=0, I 0 =2.  

that is absorbed  by the second surface ,  and also the 
funct ion G21, which is  equal to the por t ion of energy  
(emitted f rom the second surface)  that is absorbed  by 
the f i r s t  surface ,  provided that both sur faces  a re  
black.  Then obviously 

e ~  = e~- G12 + ( 1 - -  Gul ) 8~', 

s ince  pa r t  of the e n e r g y l  - G21 is re f lec ted  f rom the 
med ium back to the second sur face .  

Having solved the obtained System of equations 
with r e spec t  to e, we have 

61~ S~(~ T~--G~l S~ a T~ 

q 61~+ r~ 621+1 
1 --I"1 1 - - r  2 

where  eol = SlcrT](1 - r~), so2 = $2~T~(1 - r 2) and S~, 
S 2 a r e  the a r ea s  of the f i r s t  and second sur faces ,  
r espec t ive ly .  Since, e = 0 for T~ = T 2, it  follows that 

GI~SI= G21S~, 

i. e . ,  a r ec ip roc i ty  re la t ion  is obtained.  Taking this  
into account ,  we obtain 

e = GI~ S1 ~ T~l - -  T 4 

1 - k / ~ l  GI~-[- r~ 
(8) 

For  a plane l ayer  G12 = G21 - G; e/S I = Q (the energy  
flux). The function G(T0)(T0 is the optical  th ickness  of 
the layer)  has been n u m e r i c a l l y  calculated in [2] for a 
l ayer  f ree  of s ca t t e r i ng  or having a spher ica l  s c a t t e r -  
ing cha rac t e r i s t i c .  For  a l aye r  with a sca t t e r ing  
c h a r a c t e r i s t i c  of a s imple  elongated shape P(0) = 1 + 

+ x cos 0, we have calculated the funct ion G for a 
p lane  l ayer  in the f i r s t  approximat ion  by the method 
of spher ica l  ha rmon ic s  [3] 

1 
G (T0) = , (9) 

1 + ~-~o( 1 - - ,  ~ - )  

where ~/ = ks /k .  
We have made use  of Marshak ' s  boundary  con-  

di t ions [3]. For  two concent r ic  spheres  and two i n -  
f ini te  coaxial c i r c u l a r  cy l inders  s epa ra t ed  by an 
absorb ing  and d i spe r s ive  medium,  the funct ions G12 
a lso  can be read i ly  ca lcula ted  in f i r s t  approximat ion  
by the method of spher ica l  ha rmon ics .  Assuming  a 
spher ica l  s ca t t e r ing  c ha r a c t e r i s t i c ,  and making use  
of Mar shak ' s  boundary  condit ions,  one obtains for  
concen t r ic  spheres ,  

1 ~ ' =  .R-]- x 

1 
x (10) 

where  R 1 is the r ad ius  of the inner  sphere ,  and R~ is 
the radius  of the outer  sphere .  Using the same  a s -  
sumptions ,  for  two coaxial  cy l inders ,  we obtain 

1 1 

where tl~ and tt~ a re  the rad i i  of the inner  and outer  
ey l inders ,  r espec t ive ly .  

w It is of i n t e r e s t  to de t e rmine ,  if only qua l i t a -  
t ively,  the e r r o r  in t roduced by a s s u m i n g  val idi ty  of 
L a m b e r t ' s  law. To this  end, we have calculated in 
f i r s t  approximat ion ,  by I r o n ' s  method [3], the ene rgy  
of the rad ia t ion  t r a n s m i t t e d  through an absorb ing  and 
d i spe r s ive  l ayer  with a spher ica l  s ca t t e r ing  c h a r a c t e r -  
i s t ic .  The rad ia t ion  in tens i ty  was approximated  by the 
exp res s ion  

I(~, ~) = %(~) + ~r (~ > 0), 

I(~, ~ ) = % ( ~ ) + ~ r  ( ~ < 0 ) ,  

where p is the cosine of the angle formed between the 
axis  n o r m a l  to the planes  and the d i rec t ion  of the r a -  
diat ion.  

The in tens i ty  of the rad ia t ion  emit ted  f rom the s u r -  
face T = 0 was taken in the fo rm I 0 = 1 + (3/2)p and, 
for compar i son ,  i n t h e f o r m  I0 = 2. The sur faces  r = 0 
and T = To were  postulated to be pure ly  absorb ing  s u r -  
faces .  In the f igure ,  the curves  showing the energy 
t r a n s m i t t e d  through the layer  as a funct ion of the op-  
t ical  th ickness  of the l ayer  70 a r e  plotted for  va r ious  
values  of 7. It can be seen  f rom the f igure  that for  
modera te ly  thick l aye r s ,  a pronounced di f ference  
between the nonspher ica l  and spher ica l  rad ia t ion  
in t ens i t i e s  has only a sl ight effect On the energy 
t r a n s m i t t e d  through the l ayer .  For  l a rge  optical 
th icknesses ,  the e r r o r  in t r a n s m i t t e d  energy  that 
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arises in the substitution of spherical for non- 
spherical surface radiation does not increase ad 

infinitum, but rather tends to a certain constant 

value. Thus, for a nonscattering layer, in the 

case under consideration, the error approaches 
0.2 as TO ~ oo. 

NOTATION 

is the unit vector of radiation; k is the attenuation 

factor of the medium; k s is the scattering coefficient 
of the medium; P is the scattering characteristic; w 
is the solid angle of beam orientation; j is the source 

function, I-(F, c~) is the effective surface radiation in- 
tensity; 10 (F, w) is the surface self-radiation intensity; 
I+(F, w) is the intensity of radiation incident on the 
surface; r(F, w) is the surface reflection factor; P' is 
the reflection characteristic; Is(F k) is the reflected 

-F 
radiation intensity near the surface of Fk; al is the 
energy incident on the first surface; e01 is the proper 
energy of radiation from first surface; ~02 is the proper 

energy of radiation from second surface; T is the 
temperature of the medium; ff is the Stefan-Boltzmann 

constant; erad is the dimensionless energy of radia- 

tion of the layer ; etr is the portion of the energy trans- 
mitted through the layer; a~ is the effective radiation 
energy of the first surface; ~ is the effective radiation 

energy of second surface; T is the optical thickness; 
r is the radius vector of a point; R is the reflection 
factor of the layer. 
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